
INTEGRATED CIRCUITS

Product specification

1996 Jan 05

IC15 Data Handbook

74F219A

FEATURES

- High speed performance
- Replaces 74F219
- Address access time: 8ns max vs 28ns for 74F219
- Power dissipation: 4.3mW/bit typ
- Schottky clamp TTL
- One chip enable
- Non-Inverting outputs (for inverting outputs see 74F189A)
- 3-state outputs
- 74F219A in 150 mil wide SO is preferred options for new designs
- C3F219A in 300 mil wide SOL replaces 74F219 in existing designs

DESCRIPTION

The 74F219A is a high speed, 64–bit RAM organized as a 16–word by 4–bit array. Address inputs are buffered to minimize loading and are fully decoded on chip. The outputs are in high impedance state whenever the chip enable (\overline{CE}) is high. The outputs are active only in the READ mode (\overline{WE} = high) and the output data is the complement of the stored data.

APPLICATIONS

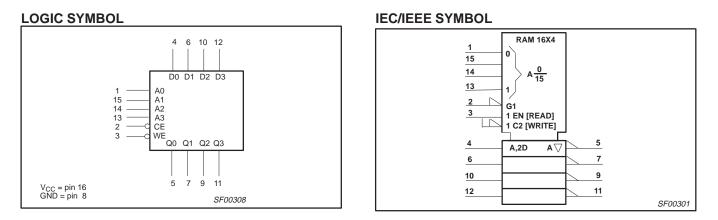
- Scratch pad memory
- Buffer memory
- Push down stacks
- Control store

PIN CONFIGURATION

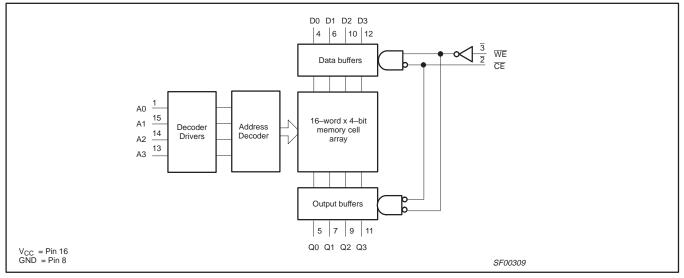
A0 1		16 V _{CC}
CE 2		15 A1
WE 3		14 A2
D0 4		13 A3
Q0 5		12 D3
D1 6		11 Q3
Q1 7		10 D2
GND 8		9 Q2
	ક	SF00307

TYPE	5.0ns	TYPICAL SUPPLY CURRENT(TOTAL)
74F219A	5.0ns	55mA

ORDERING INFORMATION


	ORDER CODE		
DESCRIPTION	COMMERCIAL RANGE V_{CC} = 5V \pm 10%, T _{amb} = 0°C to +70°C	DRAWING NUMBER	
16-pin plastic Dual In-line Package	N74F219AN	SOT38-4	
16-pin plastic Small Outline (150mil)	N74F219AD	SOT109-1	
16-pin plastic Small Outline Large (300mil)	C3F219AD	SOT162-1	

INPUT AND OUTPUT LOADING AND FAN OUT TABLE


PINS	DESCRIPTION	74F (U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
D0 – D3	Data inputs	1.0/1.0	20µA/0.6mA
A0 – A3	Address inputs	1.0/1.0	20µA/0.6mA
CE	Chip enable input (active low)	1.0/2.0	20µA/1.2mA
WE	Write enable input (active low)	1.0/2.0	20µA/1.2mA
Q0 – Q3	Data outputs	150/40	3mA/24mA

NOTE: One (1.0) FAST unit load is defined as: 20µA in the high state and 0.6mA in the low state.

74F219A

LOGIC DIAGRAM

FUNCTION TABLE

	NPUTS	\$	OUTPUT	OPERATING
CE	WE	Dn	Q _n	MODE
L	Н	Х	Stored data	Read
L	L	L	High impedance	Write "0"
L	L	Н	High impedance	Write "1"
Н	Х	Х	High impedance	Disable input

NOTES:

H = High voltage level

L = Low voltage level

X = Don't care

74F219A

ABSOLUTE MAXIMUM RATINGS

(Operation beyond the limit set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
V _{CC}	Supply voltage	-0.5 to +7.0	V
V _{IN}	Input voltage	-0.5 to +7.0	V
I _{IN}	Input current	-30 to +5	mA
V _{OUT}	Voltage applied to output in high output state	–0.5 to V _{CC}	V
I _{OUT}	Current applied to output in low output state	48	mA
T _{amb}	Operating free-air temperature range	0 to +70	°C
T _{stg}	Storage temperature range	-65 to +150	°C

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER				
STWBUL	PARAMETER	MIN	NOM	MAX	
V _{CC}	Supply voltage	4.5	5.0	5.5	V
V _{IH}	High-level input voltage	2.0			V
VIL	Low-level input voltage			0.8	V
l _{lk}	Input clamp current			-18	mA
I _{OH}	High-level output current			-3	mA
I _{OL}	Low-level output current			24	mA
T _{amb}	Operating free-air temperature range	0		+70	°C

DC ELECTRICAL CHARACTERISTICS

(Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS	1		UNIT		
					MIN	TYP ²	MAX	1
V _{OH}	High-level output voltage		$V_{CC} = MIN, V_{IL} = MAX$	±10%V _{CC}	2.4			V
			$V_{IH} = MIN, I_{OH} = MAX$	±5%V _{CC}	2.7	3.4		V
V _{OL}	Low-level output voltage		$V_{CC} = MIN, V_{IL} = MAX$	±10%V _{CC}		0.35	0.50	V
			$V_{IH} = MIN, I_{OL} = MAX$	±5%V _{CC}		0.35	0.50	V
V _{IK}	Input clamp voltage		$V_{CC} = MIN, I_I = I_{IK}$		-0.73	-1.2	V	
l _l	Input current at maximum input	t voltage	$V_{CC} = MAX, V_I = 7.0V$			100	μΑ	
I _{IH}	High–level input current		V _{CC} = MAX, V _I = 2.7V			20	μΑ	
IIL	Low–level input current	others	$V_{CC} = MAX, V_I = 0.5V$				-0.6	mA
		CE, WE	1				-1.2	mA
I _{OZH}	Offset output current, high–level voltage applied		$V_{CC} = MAX, V_I = 2.7V$				50	μΑ
I _{OZL}	Offset output current, low–level voltage applied		$V_{CC} = MAX, V_I = 0.5V$				-50	μΑ
los	Short-circuit output current ³		V _{CC} = MAX		-60		-150	mA
I _{CC}	Supply current (total)		$V_{CC} = MAX, \overline{CE} = \overline{WE} = GND$			55	80	mA
C _{IN}	Input capacitance		V _{CC} = 5V, V _{IN} = 2.0V			4		pF
C _{OUT}	Output capacitance		V _{CC} = 5V, V _{OUT} = 2.0V			7		pF

NOTES:

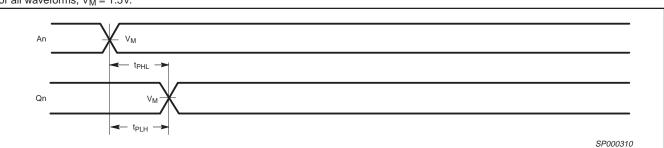
1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.

2. All typical values are at $V_{CC} = 5V$, $T_{amb} = 25^{\circ}C$. 3. Not more than one output should be shorted at a time. For testing I_{OS} , the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a high output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, I_{OS} tests should be performed last.

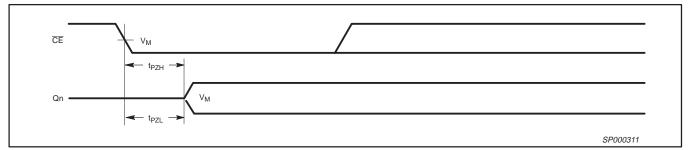
74F219A

AC ELECTRICAL CHARACTERISTICS

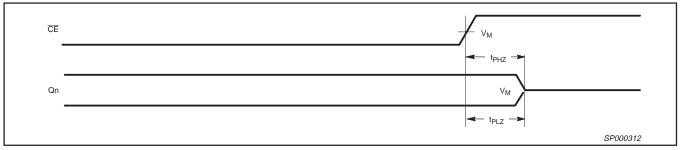
				LIMITS						
t _{PHL}	PARA	METER	TEST CONDITION	V.	_{mb} = +25 _{CC} = +5.0 0pF, R _L =	V	T _{amb} = 0°C V _{CC} = +5. C _L = 50pF,	UNIT		
				MIN	TYP	MAX	MIN	MAX	1	
	Access time	Propagation delay An to Qn	Waveform 1	2.5 2.0	5.0 4.5	8.0 8.0	2.5 2.0	8.0 8.0	ns	
t _{PZH} t _{PZL}		Enable time CE to Qn	Waveform 2	1.5 2.5	3.0 4.0	6.0 7.0	1.5 2.0	7.0 7.5	ns	
t _{PHZ} t _{PLZ}	Disable time CE to Qn		Waveform 3	2.5 1.5	4.5 3.0	7.0 5.5	2.0 1.0	8.0 6.0	ns	
t _{PZH} t _{PZL}	Write recovery time	ery time Enable time WE to Qn		2.0 3.0	3.5 4.5	6.5 7.5	1.5 2.5	7.0 8.0	ns	
t _{PHZ} t _{PLZ}	Disable time WE to Qn		Waveform 4	3.0 1.5	5.0 3.5	8.0 6.0	2.5 1.5	9.0 7.0	ns	


AC SETUP REQUIREMENT

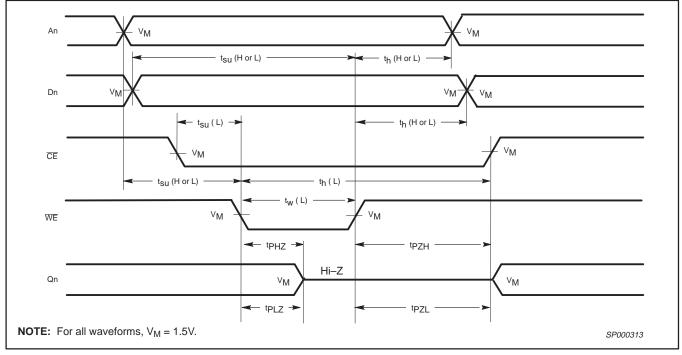
			LIMITS						
SYMBOL	PARAMETER	TEST CONDITION	T _a V C _L = 5	_{mb} = +25 _{CC} = +5.0 0pF, R _L =	°C V = 500Ω	T _{amb} = 0°0 V _{CC} = +5. C _L = 50pF,	UNIT		
			MIN	TYP	MAX	MIN	MAX		
t _{su} (H) t _{su} (L)	Setup time, high or low An to WE	Waveform 4	4.5 4.5			5.0 5.0		ns	
t _h (H) t _h (L)	Hold time, high or low An to WE	Waveform 4	0 0			0 0		ns	
t _{su} (H) t _{su} (L)	Setup time, high or low Dn to $\overline{\text{WE}}$	Waveform 4	8.0 7.5			9.0 8.5		ns	
t _h (H) t _h (L)	Hold time, high or low Dn to WE	Waveform 4	0 0			0 0		ns	
t _{su} (L)	Setup time, low \overline{CE} (falling edge) to \overline{WE} (falling edge)	Waveform 4	0			0		ns	
t _h (L)	Hold time, low $\overline{\mathrm{WE}}$ (falling edge) to $\overline{\mathrm{WE}}$ (rising edge)	Waveform 4	6.5			7.5		ns	
t _w (L)	Pulse width, low WE	Waveform 4	7.0			8.0		ns	


74F219A

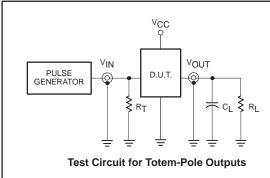
AC WAVEFORMS FOR READ CYCLES



Waveform 1. Read cycle, address access time

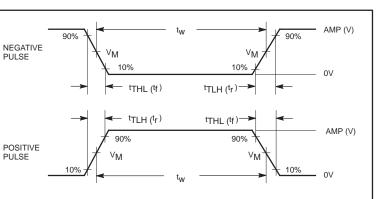

Waveform 2. Read cycle, chip enable access time

Waveform 3. Read cycle, chip disable time


74F219A

AC WAVEFORMS FOR WRITE CYCLE

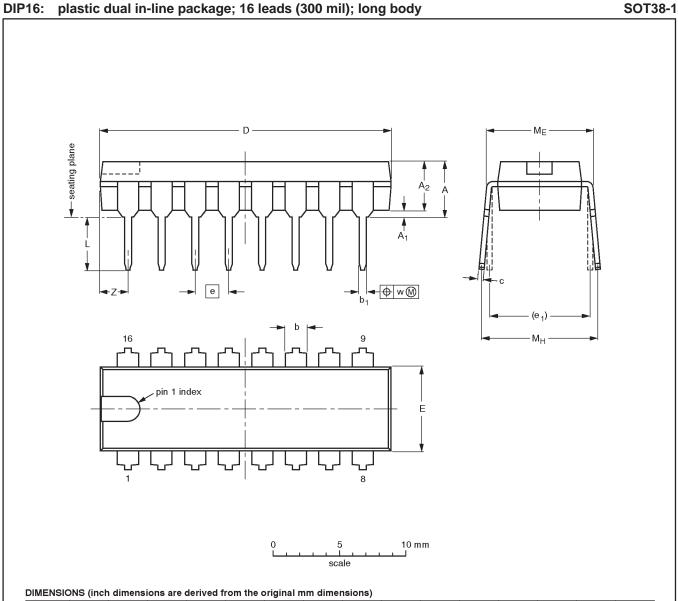
Waveform 4. Write cycle


TEST CIRCUIT AND WAVEFORM

DEFINITIONS:

R_L = Load resistor;

- See AC ELECTRICAL CHARACTERISTICS for value. CL = Load capacitance includes jig and probe capacitance; see AC ELECTRICAL CHARACTERISTICS for value.
- R_T = Termination resistance should be equal to Z_{OUT} of pulse generators.



Input Pulse Definition

family	INPUT PULSE REQUIREMENTS											
ramity	amplitude	VM	rep. rate	tw	t _{TLH}	t _{THL}						
74F	3.0V	1.5V	1MHz	500ns	2.5ns	2.5ns						

SF00006

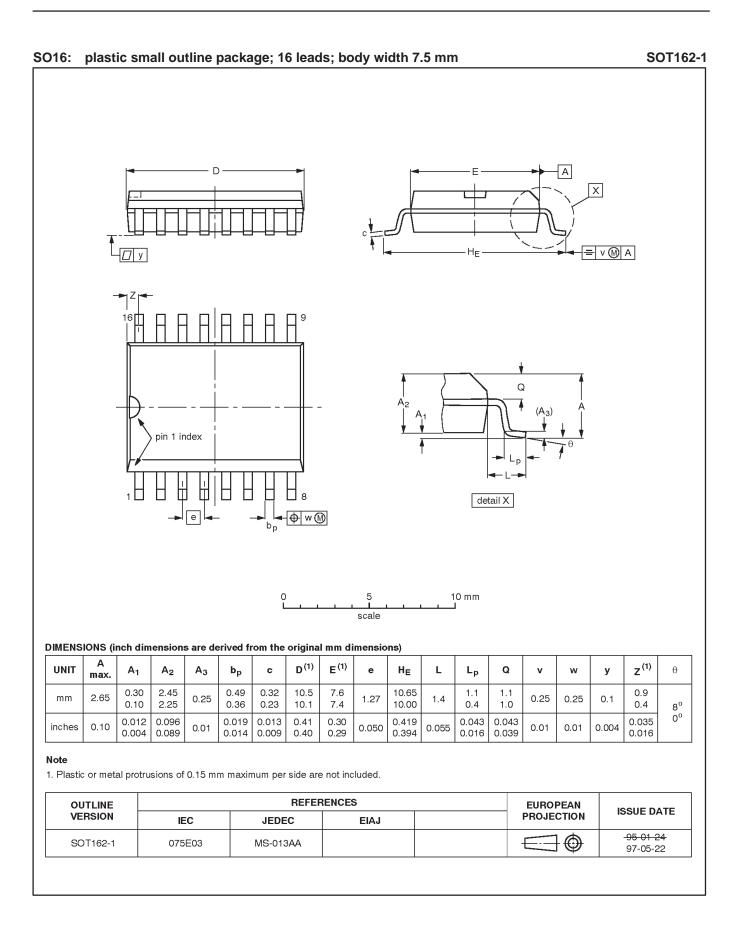
74F219A

UNIT	A max.	A ₁ min.	A ₂ max.	b	b ₁	с	D ⁽¹⁾	E ⁽¹⁾	e	e ₁	L	M _E	M _H	w	Z ⁽¹⁾ max.
mm	4.7	0.51	3.7	1.40 1.14	0.53 0.38	0.32 0.23	21.8 21.4	6.48 6.20	2.54	7.62	3.9 3.4	8.25 7.80	9.5 8.3	0.254	2.2
inches	0.19	0.020	0.15	0.055 0.045	0.021 0.015	0.013 0.009	0.86 0.84	0.26 0.24	0.10	0.30	0.15 0.13	0.32 0.31	0.37 0.33	0.01	0.087

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES				EUROPEAN	ISSUE DATE
	IEC	JEDEC	EIAJ		PROJECTION	ISSUE DATE
SOT38-1	050G09	MO-001AE				-92-10-02- 95-01-19


74F219A

64-Bit TTL bipolar RAM, non-inverting (3-State)

plastic small outline package; 16 leads; body width 3.9 mm SOT109-1 SO16: А D Х = v 🕅 A 16 Q A₂ (A_3) А pin 1 index p H H Н 8 e + + M detail X bp 0 2.5 5 mm scale DIMENSIONS (inch dimensions are derived from the original mm dimensions) Α D⁽¹⁾ E⁽¹⁾ Z⁽¹⁾ A_1 A₂ A_3 ${\rm H}_{\rm E}$ UNIT $\boldsymbol{\mathsf{b}}_{p}$ С L Lp Q w θ е v у max. 10.0 4.0 0.7 0.25 1.45 0.49 0.25 6.2 1.0 0.7 1.27 1.05 0.25 0.25 mm 1.75 0.25 0.1 8° 0.10 1.25 0.36 0.19 9.8 3.8 5.8 0.4 0.6 0.3 00 0.028 0.010 0.057 0.019 0.0100 0.39 0.16 0.244 0.039 0.028 inches 0.050 0.041 0.069 0.01 0.01 0.01 0.004 0.004 0.049 0.014 0.0075 0.38 0.15 0.228 0.016 0.020 0.012 Note 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included. REFERENCES OUTLINE EUROPEAN **ISSUE DATE** PROJECTION VERSION IEC JEDEC EIAJ 95-01-23 SOT109-1 076E07S MS-012AC \odot E 97-05-22

9

74F219A

74F219A

NOTES

74F219A

DEFINITIONS					
Data Sheet Identification	Product Status	Definition			
Objective Specification	Formative or in Design This data sheet contains the design target or goal specifications for product developme may change in any manner without notice.				
Preliminary Specification	Preproduction Product	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philip: Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.			
Product Specification	Full Production	This data sheet contains Final Specifications. Philips Semiconductors reserves the right to make changes at any time without notice, in order to improve design and supply the best possible product.			

Philips Semiconductors and Philips Electronics North America Corporation reserve the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified. Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

LIFE SUPPORT APPLICATIONS

Philips Semiconductors and Philips Electronics North America Corporation Products are not designed for use in life support appliances, devices, or systems where malfunction of a Philips Semiconductors and Philips Electronics North America Corporation Product can reasonably be expected to result in a personal injury. Philips Semiconductors and Philips Electronics North America Corporation customers using or selling Philips Semiconductors and Philips Electronics North America Corporation so at their own risk and agree to fully indemnify Philips Semiconductors and Philips Electronics North America Corporation for any damages resulting from such improper use or sale.

Philips Semiconductors 811 East Arques Avenue P.O. Box 3409 Sunnyvale, California 94088–3409 Telephone 800-234-7381 Philips Semiconductors and Philips Electronics North America Corporation register eligible circuits under the Semiconductor Chip Protection Act. © Copyright Philips Electronics North America Corporation 1996 All rights reserved. Printed in U.S.A.

(print code)

Date of release: July 1994

9397-750-05098

Document order number: